
OOP: Polymorphism in F2003

Tom Clune
SIVO Fortran 2003 Series

May 20, 2008

5/20/08 OOP Polymporphism 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

5/20/08 OOP Polymporphism 3

Outline
 Procedure variables
 Class polymorphism

 CLASS

 Template polymorphism
 Parameterized Types

5/20/08 OOP Polymporphism 4

Procedure Variables
 F2003 permits the declaration of variables associated

with procedures.
 Can have explicit or implicit interface
 Can have the POINTER attribute.
 Cannot be generic nor elemental.

 Common uses:
 Dummy arguments
 Dynamic pointers
 Components in derived types

5/20/08 OOP Polymporphism 5

Procedure Pointer Syntax
 A typical declaration of a procedure pointer:

PROCEDURE ([proc-interface]), POINTER :: p [=>
null()]

 Proc-interface can be any of:
 Empty - implicit interface (external subroutine)
 Interface block or reference procedure - explicit interface
 Type - implicit interface (external function)

 “=> null()” is optional
 Other combinations are possible. E.g.
real, external, pointer :: realFunc

 Note that the syntax is cleaner than that for C, but a bit
more verbose in most cases.

5/20/08 OOP Polymporphism 6

Assigning Procedure Pointers
 Pointer assignment follows the same conventions as

other portions of the standard:
ptr => target

 Example 1: subroutine reference
proc => mySub
call proc(a,b)

 Example 2: function evaluation:
fp => exp
sum = sum + fp(1.45)

5/20/08 OOP Polymporphism 7

Explicit Interface
 Example 1: Prototype procedure

procedure (square), pointer :: power => null()
…
real function square(x)
 square = x*x
end function square
 Pointer “power” can point to any real valued function which has 1 real

argument.
 Example 2: Abstract interface - useful when no prototype interface is

available in current scope:
abstract interface
 subroutine processInterface(…)
 …
 end subroutine processInterface
end interface
procedure (processInterface), pointer :: process

 Pointer “process” can point to any procedure with the same interface as
defined in the interface block.

5/20/08 OOP Polymporphism 8

Function return
 Procedure pointers can be the return value of a function:

function getMethod(name) result(fPtr)
 character(len=*) :: name
 procedure(interface), pointer :: fPtr

 select case (trim(name))
 case (‘a’)

fPtr => method1
 case(‘b’)
 fPtr => method2
 case default
 fPtr => null()
 end select case
end function getMethod
…
procedure(interface) pointer :: p
p => getMethod(‘a’)

5/20/08 OOP Polymporphism 9

Procedure Components
 Procedure pointers can be components within a derived type.

 Essentially the same syntax as for type-bound procedures
 Default behavior is to pass the “object” as the first argument when

using the component.
 PASS/NOPASS attribute can be used to override default

 Key differences
 Procedure pointers are data components (go above CONTAINS

clause)
 Procedure pointers are more general - can be used to point to

arbitrary “behavior”.
 Best to use type-bound procedures if same behavior is expected of

all instances for a given derived type.

5/20/08 OOP Polymporphism 10

Proc Component Example
 The following example is an example that might be useful

within the context of a nonlinear solver.
 Procedure components can use other data elements without explicit

reference within the solver.
 Especially powerful with inheritance

 type :: Nonlinear
 integer :: coefficient
 real :: tuningParam
 procedure(NonlinInterface), pointer :: eval
end type Nonlinear
type (Nonlinear) :: myObj
…
myObj % eval => complicatedFunctionOf_x
…
subroutine solver(obj, x0, x1)
 type (Nonlinear) :: obj
 real :: x0, x1
 xGuess = …
 y = obj % eval(x)! Uses obj%coefficient and obj%tuningParam
end subroutine solver

5/20/08 OOP Polymporphism 11

Example: Table of procedures
type ProcPtr ! To support array
 character(len=MAXLEN) :: name
 procedure(interfc), pointer :: p => null()
end type ProcPtr
type ProcedureTable
 type (ProcPtr), allocatable :: list(:)
contains
 procedure :: addProcedure
 procedure :: getProcedure
end type

5/20/08 OOP Polymporphism 12

Polymorphic variables
 A variable declared with the keyword CLASS (instead

of TYPE) is polymorphic:
CLASS (declaredType) …
 Variable can take on the specified type or any of its

extensions during execution.
 Type at any given point in execution is ‘dynamic type’.
 Type in declaration is the ‘declared type’.

 Restrictions: must be either pointer, allocatable, or a
dummy argument.
 Variable gets dynamic type from allocation, pointer

assignment, or argument association.
 Unlimited polymorphic entities: CLASS (*)

 Type compatible with any data type including intrinsics.

5/20/08 OOP Polymporphism 13

Polymorphic assignment
 Derived-type intrinsic assignment

 Extended to allow RHS (NOT LHS) to be polymorphic
 Types must conform - RHS may have dynamic type that is

extension of LHS
 Components of LHS are copied to corresponding components

of RHS
 Pointer assignment

 Pointer is required to be type compatible with target
 Kind-type parameters must be the same (see parameterized

types)
 If polymorphic - assumes the dynamic type of the target

 Exception: pointer may be of a sequence derived type whe
the target is unlimited polymorphic and has that derived type
as its dynamic type.

5/20/08 OOP Polymporphism 14

Example usage
Type Point
 real :: x,y
End Type Point

Type, extends(Point) :: Point3D
real :: z

End Type Point3D

Type, extends(Point) :: ColorPoint
real :: r, g, b

End type ColorPoint
…

5/20/08 OOP Polymporphism 15

Example cont’d
Type (Point) :: p0
Type (Point3D), target :: p1
Type (ColorPoint), target :: p2, p4
Class (Point), pointer :: p3 => null()

Call doSomething(p3) ! No dynamic type yet
p3 => p1
Call doSomething(p3) ! doSomething works with generic type

p4 = p3 ! Not allowed - wrong types
p3 => p2
Call doSomething(p3)
p4 = p3 ! Copy x,y,z,r,g,b from p3
P0 = p3 ! Copy x,y back

5/20/08 OOP Polymporphism 16

Extension to Allocate
 Allocate statement now accepts an optional argument that can

specify the dynamic type of a polymorphic object:
 allocate(var, SOURCE=other)
 Allocation also copies source into var
 Declaration type and dynamic type of source must be type

compatible
 Examples:

type (extended) :: foo
type (other) :: bar
class(base), allocatable :: var
allocate(var, SOURCE=foo)
! Var dynamic type is “extended”
deallocate(var)
allocate(var, SOURCE=bar)
! Var dynamic type is now “other”

5/20/08 OOP Polymporphism 17

Inquiry intrinsic functions
 SAME_TYPE_AS(A,B)

 Returns scalar default logical
 True if A and B have the same dynamic type

 EXTENDS_TYPE_OF(A,MOLD)
 Returns scalar default logical
 True if dynamic type of A is an extension of the type of MOLD
 True if MOLD is unlimited polymorphic, disassociated pointer,

or unallocated allocatable.

5/20/08 OOP Polymporphism 18

Select Type Construct
 Compiler does not ‘know’ about dynamic type of polymorphic

entity.
 Use can only access properties (methods/components) of declared

type
 Access to other components of dynamic type is through the

SELECT TYPE construct
 Similar to SELECT CASE, but for dynamic types
 Analog of ‘dynamic_cast’ in C++
 TYPE IS (type) - dynamic type exactly matches type
 CLASS IS (type) - dynamic type is type or any extension

 If more than one matches, the one that is an extension of all others
is chosen.

 CLASS DEFAULT - matches any.
 Within each block, variable acts as if declared type is given on the

TYPE IS or CLASS IS clause.

5/20/08 OOP Polymporphism 19

Select Type Example
TYPE (animal) :: a
TYPE (vertebrate) :: b ! Extends animal
TYPE (mammal) :: c ! Extends vertebrate
TYPE (cat) :: d ! Extends mammal
TYPE (primate) :: e ! Extends mammal
CLASS (animal), pointer :: pet

SELECT TYPE (pet) ! Can also use assoc. (p => pet)
TYPE IS (primate)
 call pet % swingOnBranch()
TYPE IS (cat)
 call pet % sharpenClaws()
CLASS IS (mammal)
 call pet % shedHair()
CLASS DEFAULT
 …
END SELECT TYPE

5/20/08 OOP Polymporphism 20

Advanced Example - Decorate
 Combine polymorphism and “aggregation” to get new effects

 Override class methods for any extension of base class
 Still acts as proper subclass
 E.g. add a diagnostic to certain methods

type base
 …
end type base
type, extends(base) :: decorator

class (base) :: reference
 …
end type decorator

type (someExtension) :: a
type (decorator) :: b
b = newDecorator(a) ! Store “a” as reference

5/20/08 OOP Polymporphism 21

Parameterized Types
 Sometimes referred to as parametric polymorphism
 Allows user-defined derived types that are parameterized by

‘kind’ and ‘length’ parameters.
 Similar capabilities as those provided for intrinsic types
 KIND parameters are constant (fixed at compile time) and can be

used as a KIND parameter for other intrinsic or derived types.
 Can have a default value

 LEN parameter is akin to that of the length parameter for character
and can be used for
 Character lengths of character components
 Bounds of array components

 Limited compared to templates in other languages
 E.g. cannot overload integer and floating point

5/20/08 OOP Polymporphism 22

Parameterized Syntax
Integer, parameter :: DP = kind(0.0d0)
Integer, parameter :: SP = kind(0.0)

type subregion(kind, im, jm)
integer, KIND :: kind = DP ! Default value
integer, LEN :: im, jm
real (kind) :: patch(im, jm)

End type subregion
…
type (subregion(DP, 10, 20)) :: dp
type (subregion(SP, 20, jm=20)) :: sp ! Named arg
type (subregion(10, 20)) ! Default DP

5/20/08 OOP Polymporphism 23

Parameter Enquiry
 Value of TYPE and KIND parameters can be obtained

as:
print*, obj % kind
print*,obj % im, obj % jm

 Extension for intrinsic types to match this style

character(len=MAXLEN) :: string
real (Kind=KIND(0.0D0)) :: x

print*, string % len
print*, x % kind

5/20/08 OOP Polymporphism 24

Allocatable Parameterized
 Deferred types for parameterized allocatable variables

are specified at allocation.
 Non-deferred types must agree

Type (subregion(SP,im=10,jm=5) :: a
Type (subregion(SP,:,:), ALLOCATABLE ::

myRegion,b,c
! This one copies from the source
Allocate(myRegion, SOURCE=a) ! Or
! This one does not copy
Allocate(subregion(SP,im=10,jm=5) :: b,c)

5/20/08 OOP Polymporphism 25

Dummy Variables
 For a dummy argument, an asterisk (*) may be used to

indicate an assumed value for LEN parameters
 KIND parameters must be an initialization expression

type (subregion(SP,im=7,jm=8)) :: a
call proc(a)
…
subroutine proc(arg)
 ! im,jm from actual argument
 type (subregion(SP,*,*)) :: arg
end subroutine proc

5/20/08 OOP Polymporphism 26

Supported features
 IBM XLF has procedure pointers
 Polymorphic variables generally supported by both

IBM XLF and NAG F95
 Support is somewhat fragile at this time
 No support yet for Unlimited Polymorphic Entities.

 Parameterized types generally not available at this
time.

5/20/08 OOP Polymporphism 27

Pitfalls and Best Practices
 Polymorphic variables must have either the

ALLOCATABLE or POINTER attribute or be a dummy
variable. (Always get dynamic type from other entity.)

 Polymorphism combined with subclassing is generally
safer and clearer than procedure pointers.

5/20/08 OOP Polymporphism 28

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

